Analysis of Numerical Methods Suitable for Computing Lyapunov Exponents

نویسنده

  • Gabriel James Lord
چکیده

Two standard methods for numerically estimating Lyapunov exponents are reviewed and it is noted that a numerical integration scheme that preserves orthonormality is required. A procedure is introduced for modifying arbitrary rth order numerical schemes to preserve orthonormality. Convergence is shown for the particular case when explicit Euler's method is taken as the arbitrary method. This motivates looking at more general systems of ordinary diierential equations which conserve orthonormality. An arbitrary convergent numerical method is modiied to preserve orthonormality and convergence discussed in this general case. In each case numerical results are presented for the estimation of Lyapunov exponents for the Lorenz equations and results compared with those of other authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid method for calculating Lyapunov exponents

In this paper we propose a numerical method for computing all Lyapunov coefficients of a discrete time dynamical system by spatial integration. The method extends an approach of Aston and Dellnitz (1999) who use a box approximation of an underlying ergodic measure and compute the first Lyapunov exponent from a spatial average of the norms of the Jacobian for the iterated map. In the hybrid meth...

متن کامل

Lyapunov, Bohl and Sacker-Sell Spectral Intervals for Differential-Algebraic Equations

Lyapunov and exponential dichotomy spectral theory is extended from ordinary differential equations (ODEs) to nonautonomous differential-algebraic equations (DAEs). By using orthogonal changes of variables, the original DAE system is transformed into appropriate condensed forms, for which concepts such as Lyapunov exponents, Bohl exponents, exponential dichotomy and spectral intervals of variou...

متن کامل

On the Computation of Lyapunov Exponents for Continuous Dynamical Systems∗

In this paper, we consider discrete and continuous QR algorithms for computing all of the Lyapunov exponents of a regular dynamical system. We begin by reviewing theoretical results for regular systems and present general perturbation results for Lyapunov exponents. We then present the algorithms, give an error analysis of them, and describe their implementation. Finally, we give several numeri...

متن کامل

Perturbation Theory for Approximation of Lyapunov Exponents by Qr Methods

Motivated by a recently developed backward error analysis for QR methods, we consider the error in the Lyapunov exponents of perturbed triangular systems. We consider the case of stable and distinct Lyapunov exponents as well as the case of stable but not necessarily distinct exponents. We illustrate our analytical results with a numerical example. 1. Introduction. Lyapunov exponents are often ...

متن کامل

Weakly Coupled Distributed Calculation of Lyapunov Exponents for Non-Linear Dynamical Systems

Numerical estimation of Lyapunov exponents in non-linear dynamical systems results in a very high computational cost. This is due to the large-scale computational cost of several Runge–Kutta problems that need to be calculated. In this work we introduce a parallel implementation based on MPI (Message Passing Interface) for the calculation of the Lyapunov exponents for a multidimensional dynamic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007